Paper 2: Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs		
1	Sets $f(-2) = 0 \Longrightarrow 2 \times (-2)^3 - 5 \times (-2)^2 + a \times -2 + a = 0$	M1	3.1a		
	Solves linear equation $2a - a = -36 \Longrightarrow a =$	dM1	1.1b		
	$\Rightarrow a = -36$	A1	1.1b		
		(3 n	narks)		
Notes:					
	M1: Selects a suitable method given that $(x + 2)$ is a factor of $f(x)$ Accept either setting $f(-2) = 0$ or attempted division of $f(x)$ by $(x + 2)$				

dM1: Solves linear equation in *a*. Minimum requirement is that there are two terms in '*a*' which must be collected to get $..a = .. \Rightarrow a =$

A1: a = -36

Ques	stion	Scheme	Marks	AOs	
2((a)	Identifies an error for student A: They use $\frac{\cos \theta}{\sin \theta} = \tan \theta$ It should be $\frac{\sin \theta}{\cos \theta} = \tan \theta$	B1	2.3	
			(1)		
()	b)	(i) Shows $\cos(-26.6^{\circ}) \neq 2\sin(-26.6^{\circ})$, so cannot be a solution	B1	2.4	
		(ii) Explains that the incorrect answer was introduced by squaring	B1	2.4	
			(2)		
			(3 n	narks)	
Note	es:				
(a)					
B1:	Acce	ept a response of the type 'They use $\frac{\cos\theta}{\sin\theta} = \tan\theta$. This is incorrect as	$\frac{\sin\theta}{\cos\theta} = \tan\theta$	θ'	
	It ca	n be implied by a response such as 'They should get $\tan \theta = \frac{1}{2}$ not tar	$\theta = 2'$		
	Acce	ept also statements such as 'it should be $\cot \theta = 2$ '			
(b)					
B1:		Accept a response where the candidate shows that -26.6° is not a solution of $\cos \theta = 2 \sin \theta$. This can be shown by, for example, finding both $\cos(-26.6^{\circ})$ and			
		$n(-26.6^{\circ})$ and stating that they are not equal. An acceptable alternative		that	
		$(-26.6^\circ) = +ve$ and $2\sin(-26.6^\circ) = -ve$ and stating that they therefore			

 $\cos(-26.6^\circ) = +ve$ and $2\sin(-26.6^\circ) = -ve$ and stating that they therefore cannot be equal. Explains that the incorrect answer was introduced by squaring Accept an example showing

B1: Explains that the incorrect answer was introduced by squaring Accept an example showing this. For example x = 5 squared gives $x^2 = 25$ which has answers ± 5

Quest	on Scheme	Marks	AOs	
3	3 Attempts the product and chain rule on $y = x(2x+1)^4$		2.1	
	$\frac{dy}{dx} = (2x+1)^4 + 8x(2x+1)^3$	A1	1.1b	
	Takes out a common factor $\frac{dy}{dx} = (2x+1)^3 \{(2x+1)+8x\}$	M1	1.1b	
	$\frac{dy}{dx} = (2x+1)^3(10x+1) \Longrightarrow n = 3, A = 10, B = 1$	A1	1.1b	
		(4 n	narks)	
Notes:				
M1:	blies the product rule to reach $\frac{dy}{dx} = (2x+1)^4 + Bx(2x+1)^3$			
A1:	$= (2x+1)^4 + 8x(2x+1)^3$			

M1: Takes out a common factor of $(2x+1)^3$

A1: The form of this answer is given. Look for $\frac{dy}{dx} = (2x+1)^3(10x+1) \Rightarrow n = 3, A = 10, B = 1$

Ques	tion	Scheme	Marks	AOs	
4 (;	a)	$gf(x) = 3\ln e^x$	M1	1.1b	
		$=3x, (x \in)$	A1	1.1b	
			(2)		
(b)	$gf(x) = fg(x) \Longrightarrow 3x = x^3$	M1	1.1b	
		$\Rightarrow x^3 - 3x = 0 \Rightarrow x =$	M1	1.1b	
		$\Rightarrow x = (+)\sqrt{3}$ only as $\ln x$ is not defined at $x = 0$ and $-\sqrt{3}$	M1	2.2a	
			(3)		
			(5 n	narks)	
Notes	s:				
(a) M1:	For	applying the functions in the correct order			
A1:		simplest form is required so it must be $3x$ and not left in the form $3\ln e$	x		
		nswer of $3x$ with no working would score both marks	, ,		
(b)	•				
M1:	Allo	w the candidates to score this mark if they have $e^{3\ln x} = \text{their } 3x$			
M1:		solving their cubic in x and obtaining at least one solution.			
A1:		wither stating that $x = \sqrt{3}$ only as $\ln x (\operatorname{or} 3 \ln x)$ is not defined at $x = 0$	and $-\sqrt{3}$		
	or stating that $3x = x^3$ would have three answers, one positive one negative and one zero but $\ln x$ (or $3\ln x$) is not defined for $x = 0$ so therefore there is only one (real) answer.				
		: Student who mix up fg and gf can score full marks in part (b) as they penalised in part (a)	have alrea	ıdy	

Quest	on Scheme	Marks	AOs		
5 (a)	Substitutes $t = 0.5$ into $m = 25e^{-0.05t} \implies m = 25e^{-0.05 \times 0.5}$	M1	3.4		
	$\Rightarrow m = 24.4 \mathrm{g}$	A1	1.1b		
		(2)			
(b)	States or uses $\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{e}^{-0.05t} \right) = \pm C \mathrm{e}^{-0.05t}$	M1	2.1		
	$\frac{\mathrm{d}m}{\mathrm{d}t} = -0.05 \times 25\mathrm{e}^{-0.05t} = -0.05m \Longrightarrow k = -0.05$	A1	1.1b		
		(2)			
		(4 n	narks)		
Notes:					
(a)					
M1:	Substitutes $t = 0.5$ into $m = 25e^{-0.05t} \implies m = 25e^{-0.05 \times 0.5}$				
A1:	m = 24.4g An answer of $m = 24.4$ g with no working would score both mark	KS			
(b)					
M1 :	: Applies the rule $\frac{d}{dt} (e^{kx}) = k e^{kx}$ in this context by stating or using $\frac{d}{dt} (e^{-0.05t}) = \pm C e^{-0.05t}$				
A1:	1: $\frac{\mathrm{d}m}{\mathrm{d}t} = -0.05 \times 25\mathrm{e}^{-0.05t} = -0.05m \Longrightarrow k = -0.05$				

Ques	tion	Scheme	Marks	AOs
6 (1	i)	$x^2 - 6x + 10 = (x - 3)^2 + 1$	M1	2.1
		Deduces "always true"		
		as $(x-3)^2$ $0 \Rightarrow (x-3)^2 + 1$ 1 and so is always positive	A1	2.2a
			(2)	
(ii	i)	For an explanation that it need not (always) be true		
		This could be if $a < 0$ then $ax > b \Longrightarrow x < \frac{b}{a}$	M1	2.3
		States 'sometimes' and explains if $a > 0$ then $ax > b \Rightarrow x > \frac{b}{a}$ if $a < 0$ then $ax > b \Rightarrow x < \frac{b}{a}$	A1	2.4
			(2)	
(ii	i)	Difference $=(n+1)^2 - n^2 = 2n+1$	M1	3.1a
		Deduces "Always true" as $2n+1 = (even +1) = odd$	A1	2.2a
			(2)	
			(6 n	narks)
Notes (i) M1: A1: (ii) M1:	Attery $y = 1$ State	mpts to complete the square or any other valid reason. Allow for a grap $x^2 - 6x + 10$ or an attempt to find the minimum by differentiation es always true with a valid reason for their method an explanation that it need not be true (sometimes). This could be if 0 then $ax > b \Rightarrow x < \frac{b}{-}$ or simply $-3x > 6 \Rightarrow x < -2$	bh of	
A1: (iii)	Corr	<i>a</i> ect statement (sometimes true) and explanation		
M1:		up the proof algebraically.		
		example by attempting $(n+1)^2 - n^2 = 2n+1$ or $m^2 - n^2 = (m-n)(m+1)^2$	n) with	
A1:	m = n+1States always true with reason and proofAccept a proof written in words. For exampleIf integers are consecutive, one is odd and one is evenWhen squared odd×odd = odd and even×even = evenThe difference between odd and even is always odd, hence always trueScore M1 for two of these lines and A1 for a good proof with all three lines or equivalent.		lent.	

Ques	tion	Scheme	Marks	AOs		
7(:	a)	$\sqrt{(4-x)} = 2\left(1-\frac{1}{4}x\right)^{\frac{1}{2}}$	M1	2.1		
		$\left(1-\frac{1}{4}x\right)^{\frac{1}{2}} = 1+\frac{1}{2}\left(-\frac{1}{4}x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{1}{4}x\right)^{2}+\dots$	M1	1.1b		
		$\sqrt{(4-x)} = 2\left(1 - \frac{1}{8}x - \frac{1}{128}x^2 +\right)$	A1	1.1b		
		$\sqrt{(4-x)} = 2 - \frac{1}{4}x - \frac{1}{64}x^2 + \dots$ and $k = -\frac{1}{64}$	A1	1.1b		
			(4)			
(b	(b) The expansion is valid for $ x < 4$, so $x = 1$ can be used		B1	2.4		
			(1)			
			(5 n	narks)		
Notes (a)	5:					
(u) M1:	Take	es out a factor of 4 and writes $\sqrt{(4-x)} = 2(1 \pm)^{\frac{1}{2}}$				
M1:	For a	an attempt at the binomial expansion with $n = \frac{1}{2}$				
	Eg. $(1+ax)^{\frac{1}{2}} = 1 + \frac{1}{2}(ax) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(ax)^{2} + \dots$					
A1:	Correct expression inside the bracket $1 - \frac{1}{8}x - \frac{1}{128}x^2$ + which may be left unsimplified					
A1:	$\sqrt{(4-x)} = 2 - \frac{1}{4}x - \frac{1}{64}x^2 + \dots$ and $k = -\frac{1}{64}$					
(b)						
B1:	The	expansion is valid for $ x < 4$, so $x = 1$ can be used				

Quest	tion Scheme	Marks	AOs		
8 (8	a) Gradient $AB = -\frac{2}{5}$	B1	2.1		
	y coordinate of A is 2	B1	2.1		
	Uses perpendicular gradients $y = +\frac{5}{2}x + c$	M1	2.2a		
	$\Rightarrow 2y - 5x = 4 *$	A1*	1.1b		
		(4)			
(b)	Uses Pythagoras' theorem to find AB or AD Either $\sqrt{5^2 + 2^2}$ or $\sqrt{\left(\frac{4}{5}\right)^2 + 2^2}$	M1	3.1a		
	Uses area $ABCD = AD \times AB = \sqrt{29} \times \sqrt{\frac{116}{25}}$	M1	1.1b		
	area <i>ABCD</i> = 11.6	A1	1.1b		
		(3)			
		(7 r	narks)		
Notes					
	s important that the student communicates each of these steps clearly				
B1:	States the gradient of AB is $-\frac{2}{5}$				
B1:	States that <i>y</i> coordinate of $A = 2$				
M1:	Uses the form $y = mx + c$ with $m =$ their adapted $-\frac{2}{5}$ and $c =$ their 2				
	Alternatively uses the form $y - y_1 = m(x - x_1)$ with m = their adapted $-\frac{2}{5}a$	and			
	$(x_1, y_1) = (0, 2)$				
A1*:	Proceeds to given answer				
(b) M1:	Finds the lengths of AB or AD using Pythagoras' Theorem. Look for $\sqrt{5^2}$.	$+2^2$ or			
	$\sqrt{\left(\frac{4}{5}\right)^2 + 2^2}$				
	Alternatively finds the lengths <i>BD</i> and <i>AO</i> using coordinates. Look for $\left(5 + \frac{4}{5}\right)$ and 2				
M1:	For a full method of finding the area of the rectangle <i>ABCD</i> . Allow for <i>A</i>	$D \times AB$			
	Alternatively attempts area $ABCD = 2 \times \frac{1}{2}BD \times AO = 2 \times \frac{1}{2}'5.8' \times '2'$				
A1:	Area $ABCD = 11.6$ or other exact equivalent such as $\frac{58}{5}$				

Ques	tion	Scheme	Marks	AOs	
9	9 $\int (3x^{0.5} + A) dx = 2x^{1.5} + Ax(+c)$			3.1a 1.1b	
	Uses limits and sets = $2A^2$ =	Uses limits and sets = $2A^2 \Rightarrow (2 \times 8 + 4A) - (2 \times 1 + A) = 2A^2$			
	Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^2 - 4ac$	M1	1.1b	
	$\Rightarrow A = -2, \frac{7}{2}$ and states that there are two roots	t States $b^2 - 4ac = 121 > 0$ and hence there are two roots	A1	2.4	
	1		(5 n	narks)	
Notes	5:				
M1:	Integrates the given function and a	achieves an answer of the form $kx^{1.5} + Ax$	(+c) when	e k is	
	a non- zero constant				
A1:	Correct answer but may not be simplified				
M1:	Substitutes in limits and subtracts. This can only be scored if $\int A dx = Ax$ and not $\frac{A^2}{2}$				

Sets up quadratic equation in A and either attempts to solve or attempts $b^2 - 4ac$ M1:

A1: Either
$$A = -2, \frac{7}{2}$$
 and states that there are two roots

Or states $b^2 - 4ac = 121 > 0$ and hence there are two roots

Question	Scheme	Marks	AOs
10	Attempts $S_{\infty} = \frac{8}{7} \times S_6 \Longrightarrow \frac{a}{1-r} = \frac{8}{7} \times \frac{a(1-r^6)}{1-r}$	M1	2.1
	$\Rightarrow 1 = \frac{8}{7} \times (1 - r^6)$		2.1
	$\Rightarrow r^6 = \frac{1}{8} \Rightarrow r =$	M1	1.1b
	$\Rightarrow r = \pm \frac{1}{\sqrt{2}} (\text{so } k = 2)$	A1	1.1b
		(4 n	narks)
Notes:			

Substitutes the correct formulae for S_{∞} and S_6 into the given equation $S_{\infty} = \frac{8}{7} \times S_6$ **M1:**

M1: Proceeds to an equation just in r

Solves using a correct method **M1:**

A1: Proceeds to
$$r = \pm \frac{1}{\sqrt{2}}$$
 giving $k = 2$

Quest	on Scheme	Marks	AOs		
11 (8) $f(x) = 5$	B1	1.1b		
		(1)			
(b)	(b) Uses $-2(3-x)+5=\frac{1}{2}x+30$		3.1a		
	Attempts to solve by multiplying out bracket, collect terms etc $\frac{3}{2}x = 31$	M1	1.1b		
	$x = \frac{62}{3}$ only	A1	1.1b		
		(3)			
(c)	Makes the connection that there must be two intersections. Implied by either end point $k > 5$ or $k = 11$	M1	2.2a		
	$\left\{k : k \in , 5 < k 11\right\}$	A1	2.5		
		(2)			
		(6 n	narks)		
Notes					
(a) B1:	f(x) 5 Also allow $f(x) \in [5, \infty)$				
	$\Gamma(x) = J \operatorname{Also} \operatorname{allow} \Gamma(x) \in [3, \infty)$				
(b) M1:	Deduces that the solution to $f(x) = \frac{1}{2}x + 30$ can be found by solving				
	$-2(3-x) + 5 = \frac{1}{2}x + 30$				
M1:	Correct method used to solve their equation. Multiplies out bracket/ collect	s like term	S		
A1:	$x = \frac{62}{3}$ only. Do not allow 20.6				
(c) M1:	Deduces that two distinct roots occurs when $y = k$ intersects $y = f(x)$ in two places. This may be implied by the sight of either end point. Score for sight of either $k > 5$ or $k = 11$				
A1:	Correct solution only $\{k : k \in , 5 < k \mid 11\}$				

Ques	tion Scheme	Marks	AOs		
12(a) Uses $\cos^2 x = 1 - \sin^2 x \Rightarrow 3\sin^2 x + \sin x + 8 = 9(1 - \sin^2 x)$	M1	3.1a		
	$\Rightarrow 12\sin^2 x + \sin x - 1 = 0$	A1	1.1b		
	$\Rightarrow (4\sin x - 1)(3\sin x + 1) = 0$	M1	1.1b		
	$\Rightarrow \sin x = \frac{1}{4}, -\frac{1}{3}$	A1	1.1b		
	Uses arcsin to obtain two correct values	M1	1.1b		
	All four of $x = 14.48^{\circ}, 165.52^{\circ}, -19.47^{\circ}, -160.53^{\circ}$	A1	1.1b		
		(6)			
(b)	Attempts $2\theta - 30^\circ = -19.47^\circ$	M1	3.1a		
	$\Rightarrow \theta = 5.26^{\circ}$	A1ft	1.1b		
		(2)			
		(8 r	narks)		
Notes	S:				
(a) M1:	Substitutes $\cos^2 x = 1 - \sin^2 x$ into $3\sin^2 x + \sin x + 8 = 9\cos^2 x$ to create a equation in just $\sin x$	quadratic			
A1:	$12\sin^2 x + \sin x - 1 = 0$ or exact equivalent				
M1:	Attempts to solve their quadratic equation in $\sin x$ by a suitable method. The include factorisation, formula or completing the square.	These could			
A1:	$\sin x = \frac{1}{4}, -\frac{1}{3}$				
M1 :	Obtains two correct values for their $\sin x = k$				
A1:	All four of $x = 14.48^{\circ}, 165.52^{\circ}, -19.47^{\circ}, -160.53^{\circ}$				
(b)					
M1:	For setting $2\theta - 30^\circ$ = their '-19.47°'				
A1ft:	$\theta = 5.26^{\circ}$ but allow a follow through on their '-19.47°'				

Question	Scheme	Marks	AOs
13(a)	$R = \sqrt{109}$	B1	1.1b
	$\tan \alpha = \frac{3}{10}$	M1	1.1b
	$\alpha = 16.70^{\circ}$ so $\sqrt{109}\cos(\theta + 16.70^{\circ})$	A1	1.1b
		(3)	
(b)	(i) e.g $H = 11 - 10\cos(80t)^\circ + 3\sin(80t)^\circ$ or $H = 11 - \sqrt{109}\cos(80t + 16.70)^\circ$	B1	3.3
	(ii) $11 + \sqrt{109}$ or 21.44 m	B1ft	3.4
		(2)	
(c)	Sets $80t + "16.70" = 540$	M1	3.4
	$t = \frac{540 - "16.70"}{80} = (6.54)$	M1	1.1b
	t = 6 mins 32 seconds	A1	1.1b
		(3)	
(d)	Increase the '80' in the formula For example use $H = 11 - 10\cos(90t)^\circ + 3\sin(90t)^\circ$		3.3
		(1)	
N 1 -		(9 n	narks)
Notes: (a)			
, í	$=\sqrt{109}$ Do not allow decimal equivalents		
M1: Al	low for $\tan \alpha = \pm \frac{3}{10}$		
	$10 = 16.70^{\circ}$		
$\begin{array}{c c} \mathbf{A1:} & \alpha \\ \hline \mathbf{(b)(i)} \end{array}$	-10.70		
	scheme		
(b)(ii)			
	fir 11+ their $\sqrt{109}$ Allow decimals here.		
(c) M1: Se			
	Sets $80t + "16.70" = 540$. Follow through on their 16.70 Solves their $80t + "16.70" = 540$ correctly to find t t = 6 mins 32 seconds		
	ates that to increase the speed of the wheel the 80's in the equation wareased.	ould need to b)e

Questio	on Scheme	Marks	AOs
14(a)	Sets $500 = \pi r^2 h$	B1	2.1
	Substitute $h = \frac{500}{\pi r^2}$ into $S = 2\pi r^2 + 2\pi r h = 2\pi r^2 + 2\pi r \times \frac{500}{\pi r^2}$	M1	2.1
	Simplifies to reach given answer $S = 2\pi r^2 + \frac{1000}{r} *$	A1*	1.1b
		(3)	
(b)	Differentiates S with both indices correct in $\frac{dS}{dr}$	M1	3.4
	$\frac{\mathrm{d}S}{\mathrm{d}r} = 4\pi r - \frac{1000}{r^2}$	A1	1.1b
	Sets $\frac{dS}{dr} = 0$ and proceeds to $r^3 = k, k$ is a constant	M1	2.1
	Radius = 4.30 cm	A1	1.1b
	Substitutes their $r = 4.30$ into $h = \frac{500}{\pi r^2} \implies \text{Height} = 8.60 \text{ cm}$	A1	1.1b
		(5)	
(c)	 States a valid reason such as The radius is too big for the size of our hands If r = 4.3 cm and h = 8.6 cm the can is square in profile. All drinks cans are taller than they are wide The radius is too big for us to drink from They have different dimensions to other drinks cans and would be difficult to stack on shelves with other drinks cans 	B1	3.2a
		(1)	
		9 1	marks
Notes:			
(a) B1 : Uses the correct volume formula with $V = 500$. Accept $500 = \pi r^2 h$ M1 : Substitutes $h = \frac{500}{\pi r^2}$ or $rh = \frac{500}{\pi r}$ into $S = 2\pi r^2 + 2\pi rh$ to get S as a function of r A1* : $S = 2\pi r^2 + \frac{1000}{r}$ Note that this is a given answer.			
(b)	· ·		
M1: D	Differentiates the given S to reach $\frac{dS}{dr} = Ar \pm Br^{-2}$		
A1: $\frac{1}{2}$	$\frac{dS}{dr} = 4\pi r - \frac{1000}{r^2}$ or exact equivalent		
M1: S	ets $\frac{dS}{dr} = 0$ and proceeds to $r^3 = k, k$ is a constant		
	= awrt 4.30cm I = awrt 8.60 cm		
(c) B1: A	ny valid reason. See scheme for alternatives		

Question	Scheme	Marks	AOs
15	$\frac{dy}{dx} = \frac{15}{2}x^{\frac{1}{2}} - 9$	M1 A1	3.1a 1.1b
	Substitutes $x = 4 \Longrightarrow \frac{dy}{dx} = 6$	M1	2.1
	Uses (4, 15) and gradient $\Rightarrow y-15=6(x-4)$	M1	2.1
	Equation of <i>l</i> is $y = 6x - 9$	A1	1.1b
	Area $R = \int_{0}^{4} \left(5x^{\frac{3}{2}} - 9x + 11 \right) - (6x - 9) dx$	M1	3.1a
	$= \left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x(+c)\right]_{0}^{4}$	A1	1.1b
	Uses both limits of 4 and 0 $\left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x\right]_{0}^{4} = 2 \times 4^{\frac{5}{2}} - \frac{15}{2} \times 4^{2} + 20 \times 4 - 0$	M1	2.1
	Area of $R = 24 *$	A1*	1.1b
	Correct notation with good explanations	A1	2.5
		(10)	
		(10 n	narks)

Question 15 continued

Notes	
Notes	3 1
M1:	Differentiates $5x^{\frac{3}{2}} - 9x + 11$ to a form $Ax^{\frac{1}{2}} + B$
A1:	$\frac{dy}{dx} = \frac{15}{2}x^{\frac{1}{2}} - 9$ but may not be simplified
M1:	Substitutes $x = 4$ in their $\frac{dy}{dx}$ to find the gradient of the tangent
M1:	Uses their gradient and the point (4, 15) to find the equation of the tangent
A1:	Equation of <i>l</i> is $y = 6x - 9$
M1:	Uses Area $R = \int_0^4 \left(5x^{\frac{3}{2}} - 9x + 11\right) - (6x - 9) dx$ following through on their $y = 6x - 9$
	Look for a form $Ax^{\frac{5}{2}} + Bx^2 + Cx$
A1:	$= \left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x(+c)\right]_{0}^{4}$ This must be correct but may not be simplified
M1:	Substitutes in both limits and subtracts
A1*:	Correct area for $R = 24$
A1:	Uses correct notation and produces a well explained and accurate solution. Look for
	• Correct notation used consistently and accurately for both differentiation and integration
	• Correct explanations in producing the equation of <i>l</i> . See scheme.
	• Correct explanation in finding the area of <i>R</i> . In way 2 a diagram may be used.
	Alternative method for the area using area under curve and triangles. (Way 2)
M1:	Area under curve = $\int_{0}^{4} \left(5x^{\frac{3}{2}} - 9x + 11 \right) = \left[Ax^{\frac{5}{2}} + Bx^{2} + Cx \right]_{0}^{4}$
A1:	$= \left[2x^{\frac{5}{2}} - \frac{9}{2}x^{2} + 11x\right]_{0}^{4} = 36$
M1:	This requires a full method with all triangles found using a correct method
	Look for Area $R = \text{their } 36 - \frac{1}{2} \times 15 \times \left(4 - \text{their } \frac{3}{2}\right) + \frac{1}{2} \times \text{their } 9 \times \text{their } \frac{3}{2}$

Question	Scheme	Marks	AOs
16(a)	Sets $\frac{1}{P(11-2P)} = \frac{A}{P} + \frac{B}{(11-2P)}$	B1	1.1a
	Substitutes either $P = 0$ or $P = \frac{11}{2}$ into $1 = A(11-2P) + BP \Longrightarrow A \text{ or } B$	M1	1.1b
	$\frac{1}{P(11-2P)} = \frac{\frac{1}{11}}{P} + \frac{\frac{2}{11}}{(11-2P)}$	A1	1.1b
		(3)	
(b)	Separates the variables $\int \frac{22}{P(11-2P)} dP = \int 1 dt$	B1	3.1a
	Uses (a) and attempts to integrate $\int \frac{2}{P} + \frac{4}{(11 - 2P)} dP = t + c$	M1	1.1b
	$2\ln P - 2\ln(11 - 2P) = t + c$	A1	1.1b
	Substitutes $t = 0, P = 1 \Longrightarrow t = 0, P = 1 \Longrightarrow c = (-2\ln 9)$	M1	3.1a
	Substitutes $P = 2 \Longrightarrow t = 2 \ln 2 + 2 \ln 9 - 2 \ln 7$	M1	3.1a
	Time = 1.89 years	A1	3.2a
		(6)	
(c)	Uses ln laws $2\ln P - 2\ln(11 - 2P) = t - 2\ln 9$ $\Rightarrow \ln\left(\frac{9P}{11 - 2P}\right) = \frac{1}{2}t$	M1	2.1
	Makes 'P' the subject $\Rightarrow \left(\frac{9P}{11-2P}\right) = e^{\frac{1}{2}t}$ $\Rightarrow 9P = (11-2P)e^{\frac{1}{2}t}$ $\Rightarrow P = f\left(e^{\frac{1}{2}t}\right) \text{ or } \Rightarrow P = f\left(e^{-\frac{1}{2}t}\right)$	M1	2.1
	$\Rightarrow P = \frac{11}{2 + 9e^{-\frac{1}{2}t}} \Rightarrow A = 11, B = 2, C = 9$	A1	1.1b
		(3)	
		(12 n	narks)

Question 16 continued

Ques	Question 16 continued	
Note	S:	
(a)		
B1 :	Sets $\frac{1}{P(11-2P)} = \frac{A}{P} + \frac{B}{(11-2P)}$	
M1:	Substitutes $P = 0$ or $P = \frac{11}{2}$ into $1 = A(11 - 2P) + BP \Longrightarrow A \text{ or } B$	
A1:	Alternatively compares terms to set up and solve two simultaneous equations in A and B $\frac{1}{P(11-2P)} = \frac{1}{P} + \frac{2}{(11-2P)}$ or equivalent $\frac{1}{P(11-2P)} = \frac{1}{11P} + \frac{2}{11(11-2P)}$ Note: The correct answer with no working scores all three marks.	
(b)	Note. The contect answer with no working scores an three marks.	
B1:	Separates the variables to reach $\int \frac{22}{P(11-2P)} dP = \int 1 dt$ or equivalent	
M1:	Uses part (a) and $\int \frac{A}{P} + \frac{B}{(11-2P)} dP = A \ln P \pm C \ln(11-2P)$	
A1:	Integrates both sides to form a correct equation including a 'c' Eg $2\ln P - 2\ln(11-2P) = t + c$	
M1: M1: A1:	Substitutes $t = 0$ and $P = 1$ to find c Substitutes $P = 2$ to find t . This is dependent upon having scored both previous M's Time = 1.89 years	
(c)		
M1:	Uses correct log laws to move from $2\ln P - 2\ln(11 - 2P) = t + c$ to $\ln\left(\frac{P}{11 - 2P}\right) = \frac{1}{2}t + d$	
	for their numerical 'c'	
M1:	Uses a correct method to get <i>P</i> in terms of $e^{\frac{1}{2}t}$	
	This can be achieved from $\ln\left(\frac{P}{11-2P}\right) = \frac{1}{2}t + d \Rightarrow \frac{P}{11-2P} = e^{\frac{1}{2}t+d}$ followed by cross	
	multiplication and collection of terms in P (See scheme)	
	Alternatively uses a correct method to get <i>P</i> in terms of $e^{-\frac{1}{2}t}$ For example	
	$\frac{P}{11-2P} = e^{\frac{1}{2}t+d} \Longrightarrow \frac{11-2P}{P} = e^{-\left(\frac{1}{2}t+d\right)} \Longrightarrow \frac{11}{P} - 2 = e^{-\left(\frac{1}{2}t+d\right)} \Longrightarrow \frac{11}{P} = 2 + e^{-\left(\frac{1}{2}t+d\right)} \text{ followed by}$ division	
A1:	Achieves the correct answer in the form required. $P = \frac{11}{2+9e^{-\frac{1}{2}t}} \Rightarrow A = 11, B = 2, C = 9$ oe	
	2+9e ⁻²	